Simultaneous Equations

A pair of "Simultaneous equations" is two equations which are both true at the same time. You have two equations which have two unknowns to be found.

Methods

- Method 1- Elimination

This involves changing the two equations so that one can be added/ subtracted from the other to leave us with an equation with only one unknown (which we can solve). We can 'change' the equations by multiplying them through by a constant- as long as we multiply both sides of the equation by the same number it will remain true.

- Method 2 - Substitution

The method of substitution involves transforming one equation into $\mathrm{x}=$ (something) or $\mathrm{y}=$ (something) and then substituting this something into the other equation.

Example of simultaneous Equations Using both the methods

- $3 \mathrm{f}+2 \mathrm{c}=280$
$\mathrm{f}+4 \mathrm{c}=260$

Substitution Method

- Making 'F' the subject in equation 2
$=\mathrm{f}+4 \mathrm{c}-4 \mathrm{c}=260-4 \mathrm{c}$
$=\mathrm{f}=260-4 \mathrm{c}$
- Substituting F in equation 1
$=3(260-4 \mathrm{c})+2 \mathrm{c}=280$
$=780-12 \mathrm{c}+2 \mathrm{c}=280$
$=780-10 \mathrm{c}=280$
$=780-10 \mathrm{c}-780=280-780$
$=-10 \mathrm{c}=-500$
$=\mathrm{C}=50$
- Implementing the value of C in equation 2 and then finding the value of F .
$=f=260-4(50)$
$=\mathrm{f}=260-200$
$=\mathrm{f}=60$

Elemination method

- Multiplying equation 2 by -3 so that we and -3f.
$=-3(\mathrm{f}+4 \mathrm{c}=260)$
$=-3 f+-12 c=-780$
- Adding equation 1 with equation 2 .

$$
\begin{aligned}
& =(-3 f+-12 c=-780)+(3 f+2 c=280) \\
& =-10 c+-500 \\
& =c=50
\end{aligned}
$$

- Implementing the value of C in equation 1

$$
\begin{aligned}
& =3 \mathrm{f}+2(50)=280 \\
& =3 \mathrm{f}+100=280 \\
& =3 \mathrm{f}+100-100=280-100 \\
& =3 \mathrm{f}=180 \\
& =\mathrm{f}=60
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{F} & =60 \\
\mathrm{C} & =50
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{F} & =60 \\
\mathrm{C} & =50
\end{aligned}
$$

